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LONG-TERM GOAL 

The overall goal of this work is to develop and evaluate a new spectrum-matching technique for 
inverting remotely sensed hyperspectral signals to recover environmental information. 

OBJECTIVES 

We are developing and evaluating a new technique for the extraction of environmental information 
such as water optical properties and shallow-water bottom conditions from remotely-sensed 
hyperspectral ocean-color spectra. Our technique is based on a “look-up-table (LUT)” approach in 
which the measured spectrum is compared with a large database of spectra corresponding to known 
water, bottom, and external environmental conditions. The water and bottom conditions of the water 
body where the spectrum was measured are then taken to be the same as the conditions corresponding 
to the database spectrum that most closely matches the measured spectrum.  The research issues center 
on development and evaluation of spectrum-matching algorithms, including quantification of how 
various types of errors in the measured spectrum influence the retrieved environmental data. 

APPROACH 

The technique will be developed using Hydrolight-generated pseudodata and then applied to data sets 
taken during the CoBOP (Coastal Benthic Optical Properties) and HyCODE (Hyperspectral Coastal 
Ocean Dynamics Experiment) programs. 

The Hydrolight radiative transfer numerical model (http:\\www.sequoiasci.com; Mobley, 1994; 
Mobley and Sundman, 2000a,b) gives an exact solution of the in-water radiative transfer equation 
given the water inherent optical properties (IOPs, namely the absorption and scattering properties of 
the water body), the incident sky radiance, and the bottom depth and reflectance (bottom BRDF). The 
water IOPs can be built up from any number of components, such as various microbes, dissolved 
substances, organic detritus, mineral particles, or microbubbles. For remote-sensing purposes, the 
relevant Hydrolight output is the spectral water-leaving radiance or the remote-sensing reflectance. 

We will first construct a database containing a large number of Hydrolight runs corresponding to 
different combinations of water composition (different microbial, dissolved, or mineral substances at 
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different concentrations), sky conditions (different solar angles and atmospheric conditions), sensor 
viewing directions, wavelengths, and so on. The resulting water-leaving radiances in the database, 
Lwd(8), are in principle all unique (but in practice may often be similar; 8 is the wavelength). Given a 
measured water-leaving radiance Lwm(8) (obtained from atmospheric correction of an at-sensor 
radiance), one can then "look up" the Lwd(8) spectrum that most closely matches Lwm(8). The water 
IOPs and bottom conditions in the actual water body are then taken to be the values that were used in 
Hydrolight to generate the selected Lwd(8). We thus effect an inversion of the measured spectral 
signature by the conceptually simple process of spectrum matching and then looking up the answer in 
the database. 

However, a significant problem of spectrum matching is the difficulty of finding the global (overall) 
best fit when there are many local best fits (i.e., many local minima in the function to be minimized). 
The recently developed method of simulated annealing has proved quite effecting at finding global 
minima in problems with many local minima (Press, et al., 1992). Indeed, simulated annealing has 
effectively solved the famous “traveling salesman” problem in which the total distance traveled 
between n cities must be minimized. There is an obvious analogy between the total distance between n 
cities and the distance between measured and database spectra at n wavelengths. We are therefore 
optimistic that simulated annealing will be effective in solving the type of optimization problem that 
underlies spectrum matching. 

WORK COMPLETED 

This is a new project that is just now beginning. This year’s work consisted of defining a limited set of 
Hydrolight runs for use in constructing the initial part of the data base. This initial data base is 
designed for use in recovering shallow-water environmental information, such as bathymetry and 
bottom type. This shallow-water part of the data base will be used for initial algorithm development 
and evaluation. Subsequent additions to the data base will be for deeper waters and for a wider range 
of water column properties. 

RESULTS 

We do not yet have presentable results from our initial work. However, it is worthwhile to present 
some of the science issues that must be addressed in developing and evaluating the LUT approach to 
inverting water-leaving radiances: 

!	 What is the best algorithm for deciding which Lwd spectrum most closely matches Lwm?  How well 
do different algorithms separate close matches from the overall best match (local vs. global minima 
in the fitting function)?  How should different wavelengths be weighted to de-emphasize 
wavelengths where the measured spectrum has larger inherent errors? 

!	 How do errors in Lwm determine the errors in the retrieved environmental parameters? Different 
environmental parameters affect the water-leaving radiance in different ways, and therefore will be 
retrieved with different types and magnitudes of errors if the Lwm and Lwd match is not perfect. 
How do different types of errors, e.g. errors in overall spectral shape vs. errors at a few 
wavelengths, affect the retrieval of different environmental parameters? 
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!	 How much information is added to the LUT inversion when additional wavelengths are added to 
Lw?  For what situations (retrieval of IOPs, bottom type, etc) is hyperspectral data demonstrably 
superior to multispectral data? 

!	 How does the proposed LUT approach compare to other approaches (such as the band-ratios 
algorithms or derivative algorithms) for various environmental conditions (e.g., Case 1 vs. Case 2 
waters; optically deep vs. optically shallow waters). What, in general, are the strengths and 
weaknesses of the LUT approach to ocean color inversion? 

IMPACT/APPLICATION 

The problem of extracting environmental information from remotely sensed ocean color spectra is 
fundamental to a wide range of basic and applied science problems. No single inversion technique can 
be expected to be superior in all situations; therefore all techniques must be evaluated. In addition to 
investigating a new type of inversion, part of our work is to evaluate when the LUT technique is 
superior to other techniques, and when it is not. This work thus adds to the existing suite of remote 
sensing analysis techniques. 

TRANSITIONS 

The initial data base and algorithm development are intended to support Dr. Curtiss Davis’ (NRL Code 
7212) exploitation of the Ocean PHILLS hyperspectral ocean color remote sensing system to retrieve 
bottom bathymetry and bottom classification information in optically shallow waters. The initial work 
now underway is intended for quick transition to NRL. 

RELATED PROJECTS 

This work is being conducted in conjunction with Dr. Curtiss Davis of NRL, who is separately funded 
under Hyperspectral Characterization of the Coastal Ocean (HCCO), and with Dr. Paul Bissett, who is 
separately funded at the Florida Environmental Research Institute. 
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